

FULLY MECHANIZED RICE AND WHEAT PRODUCTION WITH A FOCUS ON LOSS REDUCTION

PART.02

Mechanization Technology of Land Preparation

1. Mechanized Land Preparation Technology

Mechanized operations:

- Use of **mechanical power** to operate equipment such as **mouldboard ploughs, rotary tillers, and subsoilers**.
- Efficiently perform **ploughing, soil fragmentation, and farmland levelling**.

Objectives:

- Improve **soil structure**.
- Enhance **soil fertility**.
- Create favourable conditions for **sowing** and **crop growth**.

Outcomes:

- Increases **production efficiency**.
- Reduces **labor intensity**.
- Promotes **agricultural standardization** and **large-scale farming**.

2. Laser Land Preparation Technology

How it works

- Uses **laser transmitters and receivers** for **real-time monitoring and control**.
- Automatically **adjusts blade height** via the hydraulic system.
- Achieves **high-precision levelling** (accuracy within ± 2 cm).

Applicable scenarios

- **Paddy fields**.
- **Dryland**.
- **Irrigated farmland**.

Key benefits

- Improves **irrigation uniformity**.
- Reduces **water waste**.
- Improves **efficiency** of agricultural mechanization operations.

3. Land Preparation and Returning Straw to the Field

1. Ploughing with straw deep-burying

How it works

- Uses **mouldboard or disc plow**.
- Tillage depth: **18–35 cm**.
- Buries **straw in lower soil layer** → full **contact with soil** → faster **decomposition**.

Advantages

- Creates **deep cultivated layer**, improves soil structure.
- Increases **soil permeability & water-holding capacity**.
- Promotes thorough **straw decomposition**, reduces pests/diseases risks.
- Suitable for **plots** with a **large amount of straw** and **fertile soils**.

Disadvantages

- **High power consumption**.
- Requires **large machinery** and **higher costs**.
- Disrupts **original soil structure** → **loose surface soil**.
- Needs **refinement** with **rotary tillage**.

2. Rotary tillage with straw returning

How it works

- Uses **rotary tiller** to mix & smash straw with **surface soil** (0–15 cm).
- Ensures **straw is evenly distributed** in soil.
- **Shallow tillage depth**: typically, 10–15 cm.

Advantages

- **Low power consumption**.
- Suitable for **small & medium machinery**.
- **Even mixing** → faster straw decomposition.
- **Highly adaptable** → applicable to **various crop residues**.

Disadvantages

- **Shallow cultivated layer**.
- Large amounts of **straw** may not be fully buried → some left on **surface**.
- Long-term **rotary tillage** → risk of **soil compaction**.
- Requires regular **deep ploughing** to mitigate **soil compaction**.

3. No-tillage with straw returning

How it works

- Cover **soil surface** with **straw** without tillage.
- **Direct seeding into furrows** created in the straw mulch layer.

Advantages

- Minimizes **soil disturbance**, preserves **soil structure**.
- Reduces **soil erosion**.
- **Straw mulching** keeps soil warm & moist, inhibit **weed growth**.
- Saves **fuel & machinery costs**.
- Suitable for **conservation tillage**.

Disadvantages

- May affect **sowing quality** → **uneven seedling emergence**.
- Higher risk of **pests & diseases** → requires **stronger control**.
- Slow **straw decomposition** → may affect **crop growth** in next season.

Straw Treatment – Key Focus

- Select appropriate method according to local conditions.
- Follow key principles:
 - Shorter cuts.
 - Even distribution.
 - Deeper burial.
 - Cleaner overall handling.

4. Ploughing combined with rotary tillage

How it works

- Combines two tillage methods:
 - > Ploughing → deeply bury straw (18–35 cm).
 - > Rotary tillage → finely crush & level topsoil layer (0–15 cm).

Benefits

- Ensures full straw return to the field.
- Create well-prepared seedbeds for crop cultivation.

Recommendations for Straw Returning & Land Preparation

Promote advanced technologies

- Promote **laser leveling technology** to reduce **fertilizer, water, and pesticide usage**.
- Develop and improve **high-quality straw/stubble returning technology**.
- Promote **large-scale combined tillage machinery** for efficient, precise operations.

Adapt to local conditions

- Select the most appropriate **land preparation** and **straw returning method** according to:
 - **Regional characteristics.**
 - **Farm operator conditions.**

