
FULLY MECHANIZED RICE AND WHEAT PRODUCTION WITH A FOCUS ON LOSS REDUCTION

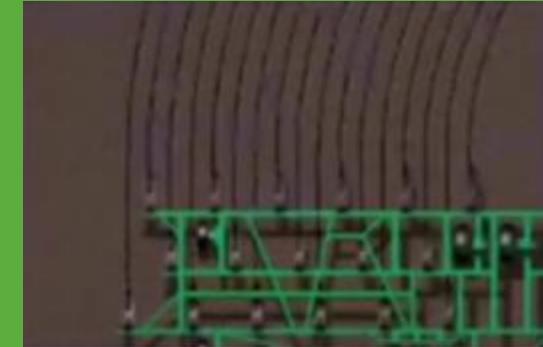
PART.03

Precision Seeding Technology

Key Objectives and Measures of Precision Sowing Technology

■ Primary Goal

- Achieve "uniform and complete seedling emergence in one sowing".


■ Four Key Measures

- Precise seed quality control-ideal seeds.
- Optimized soil conditions-ideal seedbed.
- Accurate sowing depth and spacing-ideal seed placement.
- Proper temperature and moisture management-ideal environment.

■ Integrated Benefits

- Uniform germination and emergence.
- Efficient seed utilization.
- Reduced resource waste.
- Improved overall crop quality.

Sowing Position Needs to Be Precisely Controlled

■ Fundamental Requirement

- **Precise control of sowing position** to ensure uniform emergence and good growth.

■ Traditional Limitations

- **Spring-based depth control** of seeding susceptible to soil hardness/topography.
- **Unstable sowing depth.**

■ Technological Upgrade

- Upgraded control device to **electro-hydraulic control**.
- Acts as a **“smart brain” on the seeder** to automatically adjusts seeding depth based on soil conditions.
- Ensures **stable seeding depth**.

Hydraulic Pressure Control

Pneumatic Downforce Control

Precision Seeding

Sowing Position Needs to Be Precisely Controlled

■ Additional Innovation

- Incorporates **precise seed-dropping technology** that functions accurately **even at speeds >10 km/h.**
- Ensures **uniform seed spacing** and **accurate sowing position.**

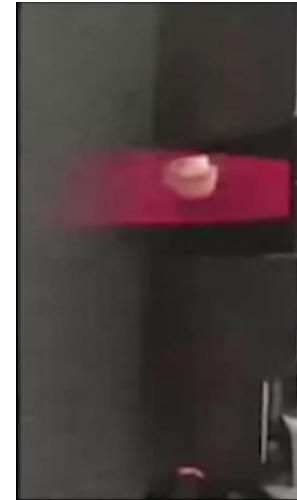

■ Integrated Advantages

- **Faster and more accurate sowing.**
- Meets the needs of modern agriculture for **efficient, high-quality planting.**

Hydraulic Pressure
Control

Pneumatic
Downforce
Control

Precision Seeding


Seeding Quality Monitoring

■ Photoelectric-based Sensor

- Captures **real-time data** of seed position, spacing, and sowing depth.
- **Free from dust interference** in the field.
- **Accurately detects** sowing uniformity and missed seeds.
- Transmit the data to the **intelligent system for analysis**.

■ Automatic Control System

- Remotely set **sowing parameter** through mobiles/computers.
- Automatically plan roots according to **GPS navigation** to ensure the accurate operation of the seeder.
- Displays key indicators in real time.
- Finds problems and traces the whole process.
- Achieves **efficient and accurate sowing**.

Sowing Quality Monitoring

Seeding Quality Monitoring

Seed Metering Device

■ Reliable Performance

- **99% pass rate** ensuring sowing consistency.

■ High Efficiency

- **36m working width** with **16km/h operational speed**.

■ Accurate Control

- **Millimeter-level precise control** of sowing depth and plant spacing.

■ Intelligent Monitoring System

- **Visual parameter setting**.
- **Real-time quality monitoring** of sowing rate, missed sowing rate, etc..

■ Full Traceability

- Ensures accurate, efficient, and fully traceable sowing operations.

Precision Planting's Seeder Products

■ Smart Variable-Rate Control

- Dynamically adjusts **sowing and fertilizer application rates**.
- Real-time monitoring of **soil organic matter, temperature, humidity and residues**.
- Enables **optimized variable operations**.

■ Precision Seeding Control

- Utilizes **high-speed, precise seeding systems**.
- Employs **precise monomer pressure control**.
- Ensures **consistent sowing depth and plant spacing**.

■ Agronomic Performance

- Improved **seed germination rates**.
- Enhances **uniformity of seedling emergence** in the field.

■ Industry Impact

- Advancing precision agriculture toward **greater intelligence and efficiency**.

GPS-SWITCH Seeding Single-row Control Technology

■ Single-Row Smart Control

- Automatically monitors the **sown area** through **GPS system** → generates **crop distribution information map** (population distribution + individual location).
- Realizes **intelligent planning of seeding path** and **accurate avoidance of overlapping**.
- Ensures **uniform single-row seeding**, **optimized crop spatial distribution**, and **data-based management support for precision agriculture**.

■ Key Technologies of Precision Variable Seeding and Fertilization

- **Precision Actuation:** Hydraulic drive precision variable seeding and fertilizer application.
- **Adaptive Control:** Adaptive control and precise adjustment of sowing rate.
- **Navi-Monitoring:** GPS positioning and automatic navigation, and real-time monitoring technology of operation quality and the status of machinery.

Smart Wheat Farming Technology Supported by the Beidou Navigation System

■ Core Technology

- Enables **intelligent management of the entire wheat production process** → supported by **high precision (centimeter level) positioning**.

■ Functional Applications

- Automatic navigation and driving.
- Precision Sowing.
- Variable-rate Fertilization.
- Plant Protection.

■ Benefits

- Optimizes efficiency and resource utilization.
- Improves wheat yield and quality.
- Promotes the "unmanned farm" model.

■ Supporting Technologies

- Drone monitoring and big data analysis.

Pneumatic Single-Seed Precision Sowing Technology

■ Working principle

- Airflow based seed agitation device → optimized seed conditions → enhanced seed flow + reduced inter seed interactions → expanded effective seed filling range.

■ Supporting system

- High-precision air-suction seed metering system.

■ Technical effects

- Enable **accurate single-seed sowing** and improve **operational efficiency** and **sowing uniformity**.

Precision Seeding Technology

■ Development direction

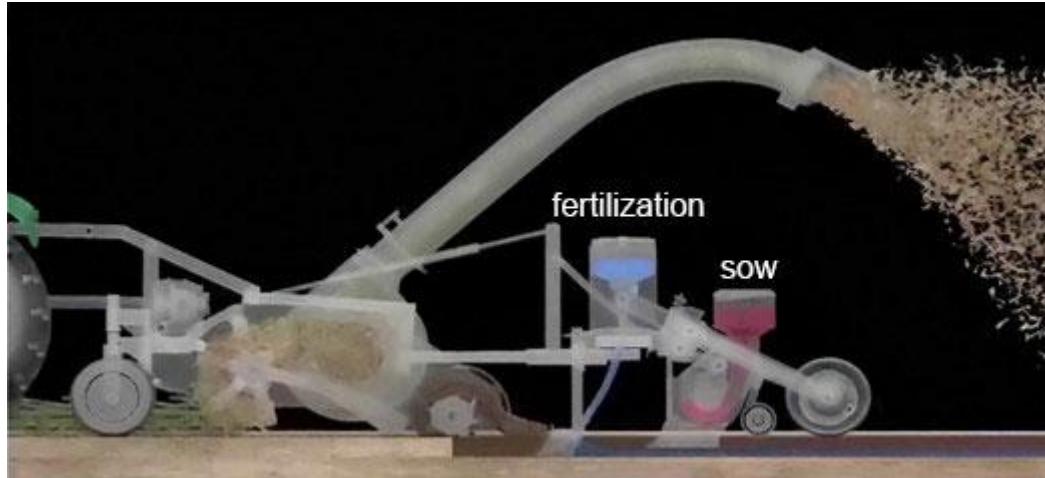
- High-speed sowing and dense cultivation.

■ Improvement methods

- Improve **operation efficiency and accuracy** by **optimizing key indicators** such as the layout of seeding holes, sowing parameters, and positive pressure.
- Develop **multi-type seeding components** to adapt to different **crop varieties** and **cultivation modes**.

■ Cultivation effect

- Significantly **increase planting density** (maize 82,500 plants/ha, soybean 375,000 plants/ha).


■ Operation results

- Over **95%** pass rate at a high speed of **12 km/h**.

■ Final goal

- Achieve **efficient coordination** between **high and stable yield** and **mechanization**, promoting **agricultural intensification**.

Zero-Tillage Clean Area Seeding Technology

■ Technology type

- A **conservation tillage** technology that uses **direct seeding on untilled soil**.

■ Key Components and Operation

- Uses a **belt cleaning** device (e.g., rotary tillage knife or stubble removal unit) to **remove weeds and residues** from the **seeding belt**.

■ Benefits

- Preserves **soil moisture**, **resists erosion**, and promotes **rapid seedling emergence**.

■ Operational and Environmental Advantages

- Reduces **soil disturbance** and **lowers operating costs**.
- Integrates with **precision fertilization** and **plant protection**.
- Improves **resource use efficiency** and promotes **sustainable agricultural development**.

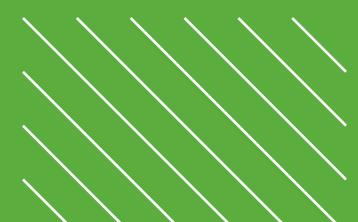
Direct Seeding Technology of Paddy Rice

■ Operation method

- Eliminates the seedling production and transplanting stages with the advantages of **labor and cost saving, high efficiency and convenience.**

■ Applicable areas

- Areas with **favorable climatic conditions** including **adequate water, suitable temperature and light, and a long growing season.**



■ Technology requirements

- Needs to be supported by **precision sowing, effective weed control, and proper water and fertilizer management** to ensure yield and quality.

■ Model characteristics

- A classic mode combining simplified planting with mechanization.

Direct Seeding Technology of Paddy Rice

Key Risks

- **Variety limitation**
Cropping season + growth period → consideration of **early maturity + stress resistance**.
- **High land prep standards**
Difficulty achieving a flat, even field → **uneven seedling emergence**.
- **Weather sensitivity**
Unfavorable weather conditions → **unstable seedling establishment** → difficult to ensure uniform + vigorous seedling stands.
- **Weed and weedy rice control**
Requires precise herbicide application techniques.
- **Late-stage issues**
Early senescence and lodging reduce yield stability.

Solutions

Integrated approach: Variety improvement, precision sowing, field management, and mechanized support.

Synchronized Furrow-Opening and Ridge-Forming Precision Hill-Drop Seeding Technology for Direct-Seeded Rice

■ Operation method

- Integrates **mechanized furrowing, ridging, and precise hill seeding** into a **single operation**.

■ Technical benefits

- Reduces water usage by **30%** and methane emissions by **10%**.
- Improves **water use efficiency** and lowers **greenhouse gas emissions** in the field.

■ Technical status

- A key technology for **simplified cultivation** and **environmentally friendly** agriculture.

Large-Width Precision Water Direct Seeding Machine for Rice

Technology Features

- Electric-driven seed metering:** Enables **stepless seeding rate adjustment** via **intelligent control**, with **real-time ground wheel monitoring** for uniform sowing.
- Precision seeding:** **Online quality monitoring + jet-insertion technology** for accurate seed placement.

Operational Benefits

- Integrated process:** Simultaneous **furrow opening & wheel track covering** improves **efficiency**.
- Key outcomes:** Enhances **water seeding accuracy** and **seedling establishment rate**.

Drone Sowing Technology for Paddy Rice

Technical features: Flexibly Adapting to Diverse Field Conditions

Orderly Strip Sowing:

- Plants 8 rows at a time with 2.7 meters row spacing, suitable for neatly arranged fields.

Wide-Spread Sowing:

- Covers 5 - 10 meters in width per pass, ideal for complex terrains or large-scale planting.

Adjustable Row Spacing:

- Row spacing can be freely adjusted between 20 - 30 cm to adapt to different varieties and planting densities.

Drone Sowing Technology for Paddy Rice

Technical advantages

- Highly efficient, capable of sowing **over 30 mu (approximately 2 hectares) per hour.**
- Suitable for **hilly, mountainous areas, or fragmented fields**, able to **bypass obstacles**.
- Eliminates the need for seedling production and transplanting, supporting **simplified field management and large-scale operations.**

Technical significance

- Promotes the development of smart agriculture, making farming more scientific and efficient.

“Wheat Furrow” Rice Wet Planting Technology

■ Concept Origin

- Inspired by wheat ridge-furrow cultivation.
- Applies ridge planting and furrow irrigation to rice.

■ Water & Seedling Benefits

- Reduces water use by >30% vs. traditional flood irrigation.
- Accelerates soil warming; enhances seedling vigor.
- Enables precise water control.

■ Field Structure & Irrigation

- Forms “ridge-furrow” structure via mechanized ditching and ridge formation.
- Moist irrigation management reduces ineffective water consumption.

■ Soil, Root & Environment

- Inhibits methane emissions.
- Improves soil permeability.
- Promotes root development.

■ Suitability & Value

- Beneficial in water shortage or arid regions.
- Offers ecological benefits and stable yields.

Vacuum Drum-Type Rice Seedling Sowing Assembly Line

■ Core Technology

- Achieves single-grain precision sowing using **negative pressure adsorption**.
- Drum-type trays + airflow-assisted seed filling → **uniform seeding and spacing**.
- Integrated automation → **soil spreading, watering, soil covering** → standardized seedling production.

■ Technical Advantages

- Improves **seedling quality** and **production efficiency**.
- Serves as a core technology for **factory-style seedling cultivation** and **mechanized transplanting**.

■ Supporting Technologies

- **Seed handling:** Composite vibration filling, pneumatic seed cleaning, balanced air distribution.
- **Smart control:** Integrated multi-process control system.
- **Seedling strengthening:** Stacked dark-treatment for cultivating **strong, healthy seedlings**.

Carpet Seedling Mechanical Transplanting Technology

■ Technical Features

- **Mature & reliable:** Officially promoted by agricultural authorities with stable **high-yield performance** and **low operational risk**.
- **Adaptive cultivation:** Adopts **diversified seedling cultivation methods** tailored to **local conditions**, adjusting practices based on **variety**, **climate**, and **seedling traits**.

■ Supporting Machinery

- Hydraulic contour-following.
- Self-balancing systems.
- Four-wheel drive technology.

■ Core Advantages

- Consistent transplanting depth and efficient operation.
- Enhances the efficiency of mechanized transplanting and rice yield stability.

Roll-Seedling Rice Cultivation Technology

Technical Principle

- **Roll-type cultivation:**
Mechanically sows rice seeds onto a cylindrical carrier to form roll-type seedlings.

Core Advantages

- Reduces labor and cost.
- Improves seedlings quality.
- Ease of transplanting.

Large-Seedling Rice Transplanter

■ Technical Innovation

- **"Kidney-shaped" trajectory:** Raises static transplanting path height from 280 mm to 320 mm, significantly enlarging the **dynamic trajectory's clearance space**.
- **Tall seedling adaptation:** Accommodates seedling heights of up to 40 cm (vs. 25 cm limit).

Performance Advantages

- Solves transplanting issues of tall/soft-tray seedlings.
- Reduces seedling damage and missed planting.
- Improves transplanting efficiency and field establishment quality.
- Supports the advancement of mechanized rice farming toward deep planting of strong seedlings.

Optimal Seedling Traits

- Around 35 days old.
- Upright, vibrant green leaves.
- Well-developed and densely entangled roots.
- Sturdy, resilient stems.

Rice Transplanter with Synchronized Furrow-Opening Device

■ Technical Innovation

- Combines transplanting with the excavation of field drainage or irrigation furrows in one operation.

■ Key Features

- Special attachment creates drainage/irrigation furrows between seedling rows.
- Follows pre-set specifications for spacing, depth, and width.

■ Benefits

- Efficiency:** Improves field operation efficiency.
- Soil Health:** Reduces machine passes, minimizing soil compaction and damage.
- Water & Nutrient Management:** Enhances field water and nutrient utilization.

■ Impact

- Significant advancement in modern, mechanized, and precision agriculture.

Pot Seedling Mechanical Transplanting

Technical Features

- Uses specialized machinery to transplant pot-or plug-grown seedlings directly into the field.

Core Advantages

- High efficiency and consistent transplanting quality.
- Reduced labor intensity.
- Enhanced crop stress resistance.

Limitations

- Higher equipment costs.
- Requires high-quality seedlings.

Core Focus

- Protects the integrity of root system.
- Improves transplanting efficiency and survival rates.
- Ensures precise spacing and depth for standardized planting.

Clamp-and-Pull Type Pot Seedling Transplanter

Technology Highlights

- Wide-Span Orderly Throwing:** High-efficiency mechanized transplanting method for even, orderly pot seedling distribution across a wide working width.
- Core Mechanism:** Seedling-throwing mechanism for accurate placement at preset row spacing and density.
- Operation Mode:** Wide-span (e.g., 2 - 4 rows simultaneously) for efficient, low-damage transplanting.

Benefits

- Seedling Quality:** Preserves root integrity and maintains seedlings upright.
- Farming Scale:** Well-suited for large-scale farming.
- Economic Impact:** Improves efficiency, cuts labor costs.
- Innovation:** Important advancement in pot seedling transplanting mechanization.

