

FULLY MECHANIZED RICE AND WHEAT PRODUCTION WITH A FOCUS ON LOSS REDUCTION

PART.04

Mechanization of Field Management

Mechanization in Plant Protection Management

1. Traditional methods and their limitations

■ Knapsack Sprayers

Limited coverage, inefficient, and physically demanding.

■ Wide-Range and Long-Distance Sprayers

Increased coverage but still not fast enough for large fields.

■ Manual Tube Spraying

Faster than knapsack sprayers but labor-intensive and challenging in muddy or uneven fields.

■ Existing problems

Low efficiency or tiring operation.

Mechanization in Plant Protection Management

2. Paddy Field Self-propelled Boom Sprayer

■ Operational efficiency

- Significantly improves the **efficiency** of plant protection operations in rice fields.

■ Advantages of large models

- **Effective spraying width** over 30 meters, with **uniform spraying** and **wide coverage**.
- Large-flow spraying effectively **controls pests and diseases** in the **middle and lower** layers of rice plants.

■ Equipment features

- Equipped with **special wheels** for paddy fields, offering **strong mobility**.
- **Adapts to complex field conditions**, allowing **flexible operation** and **reducing labor demands**.

■ Key Role

- Serve as **crucial equipment** for modern paddy field plant protection.

Mechanization in Plant Protection Management

3. Wheat Field Self-propelled Boom Sprayer

■ Advantages

- Important tool because of its **high efficiency** and **adaptability**.

■ Tool features

- Operates autonomously without tractor traction.
- Flexible operation and high operational efficiency.
- Wide spraying width and uniform droplets.

■ Control effect

- Effectively **covers the middle and lower layers** of crops, ensuring control effect.
- Significantly improves the **efficiency and quality of pest control**.

Mechanization in Plant Protection Management

4. Plant protection drones

■ Significant advantages

- **Low-altitude operation** with minimal drift.
- **Hover and fly autonomously** without requiring runways.
- **Rotor-generated airflow enhances spray penetration and effectiveness.**
- **Eliminate the need for walking in paddy fields**, preventing seedling damage.
- Ensures **safe operation** by **separating humans, machinery, and chemicals**.

■ Comprehensive benefits

- Reduces pesticide usage by 20% and water consumption by 90%.
- Delivers **equal or better pest control outcomes**.

■ Overall assessment

- A new, efficient, and **environmentally friendly** option for plant protection.

Mechanization in Fertilization Management

1. Need for precision fertilization

■ Current fertilization situation

- Rely on **manual fertilizer-spreading** or **surface-spreading** methods → **low fertilizer utilization rate** and **serious waste**.
- Only around **30% of farmland** is fertilized using **mechanized equipment**.

■ Existing problems

- Fertilizer usage per acre far exceeds the global average.
- Leads to soil compaction, acidification, and even water pollution.

■ Solution

- Promote **mechanized precision fertilization** technologies.
- **Intelligent fertilizer applicators** precisely apply fertilizers based on crop needs.
 - Reduces waste and costs.
 - Protects soil and the environment, enabling efficient and sustainable agriculture.

Mechanization in Fertilization Management

2. Dual-disc centrifugal spreader with an adjustable spreading width

■ Working principle

- Disperses fertilizer using centrifugal force generated by two high-speed rotating discs.

■ Key advantages

- An built-in adjustment mechanism enables flexible control of spreading width (8–20 meters) to meet different field sizes and fertilization requirements.
- Vibrating or screw feeding system ensures uniform distribution, high coverage accuracy, and fast operation efficiency.

■ Applications

- Widely used for base fertilization and topdressing in farmland, offering both precision and practicality.

Mechanization in Fertilization Management

3. Multiple solid and liquid fertilizer application equipment

■ Core Function

- Enables **combined application** of organic solid and liquid fertilizers.

■ Key technologies integrated

- Efficient solid-liquid separation.
- Controlled fertilizer transport and uniform spreading.
- Subsurface liquid fertilizer application.

■ Equipment and processing

- Utilizes specialized fertilizer tanks and separation devices to process mixed solid-liquid fertilizers.

■ Application Process

- Through **precise control**, **solid fertilizers** are **evenly spread**.
- Liquid fertilizers** are **deeply applied** and **covered with soil**.

3. Multiple solid and liquid fertilizer application equipment

■ Environmental Benefits

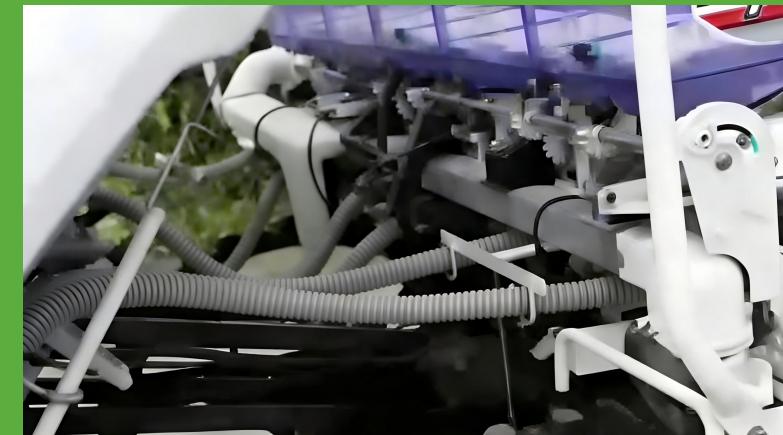
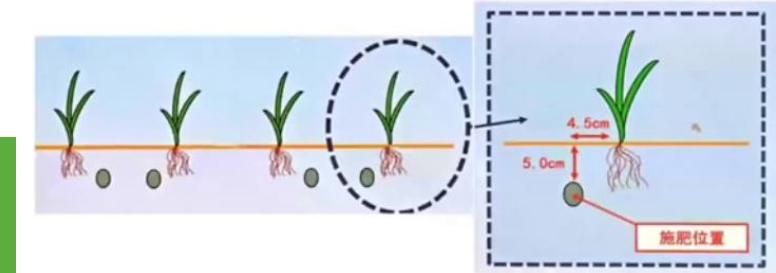
- Reduces **nutrient loss** and **environmental pollution**.
- Improves **fertilizer return** efficiency.
- Promotes the **resource utilization** of agricultural waste.

■ Liquid Fertilizer Application

- Precise control of flow rate and atomization to evenly spray liquid fertilizers onto crop leaves or root zones.
- Enables **efficient topdressing** and **rapid nutrient absorption**.

Mechanization in Fertilization Management

4. Deep side-placement fertilization technology for rice



- **Core Function:** Enables **efficient application of chemical fertilizers**, reduces nutrition loss and environmental impact in **hot/humid environments**.

- **Technical measures**

- Optimizes the fertilizer delivery to avoid blockages.
- Precisely places **fertilizer in the root zone** using an **anti-drift design**.
- During transplanting, **granular fertilizers** are precisely applied into **deeper soil** near the root zone.

- **Technical effects**

- **Shorter distance between fertilizer and roots** enhances nutrient uptake.
- Improves fertilizer use **efficiency**.
- Reduces nutrient loss.
- Supports both **increased yields** and **environmental protection**.

Mechanization in Fertilization Management

5. The slow-release fertilizer encapsulation technology

- Uses organic/inorganic binders.
- Coats fertilizer granules.

Intelligent Nutrient
Release System

- Regulates nutrient release to meet crop needs.
- Aligns nutrients with growth cycles.

Precision Release
Technology

- Improves fertilizer utilization rate.
- Reduces environmental risks.

Eco-efficiency
Features

6. Fertigation technology

■ Technical Principle

- Combines irrigation and fertilization by delivering nutrients and water directly to the crop root zone through pipelines.

■ Technical Features

- Synchronized and on-demand delivery of nutrients and water.

■ Technical Advantages

- Improves absorption efficiency of nutrients and water.
- Reduces resource waste.
- Promotes efficient crop growth.

Mechanization in Weeding Management

Chemical weeding

- **Method:** Relies heavily on the spraying of herbicides.
- **Issues:** Environmental pollution, phytotoxicity, increased herbicide resistance, and residue in agricultural products.

Manual weeding

- **Issues:** labor-intensive, inefficient, and costly.

Mechanized weeding

- **Advantages:** Intelligence-based operation, high efficiency, and environmental friendliness.
- **Status:** A much-needed green solution for agriculture.
- **Role:** Replaces traditional methods and promotes sustainable agricultural development.

Mechanization in Weeding Management

■ Mechanized inter-row weeding

- **Principle:** Power-driven blades or tines penetrate the soil to cut weed roots and stir the topsoil.
- **Advantages:** Efficient soil loosening and weed removal, suppresses weed regrowth, enhances crop competitiveness, and reduces labor costs.
- **Status:** A key technology in modern field management.

■ Spring-tooth inter-row weeding and fertilizing machine

- **Functions:** Loosens soil and removes weeds using flexible tine rods with integrated fertilization.
- **Characteristics:** Simultaneous weeding and topdressing, reduces labor input, and increases operational efficiency.
- **Applicable scenarios:** Conservation tillage.
- **Benefits:** Offers dual advantages of soil preservation and improved yields.